Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: covidwho-2281808

ABSTRACT

Saliva is gaining increasing attention as a source of biomarkers due to non-invasive and undemanding collection access. Extracellular vesicles (EVs) are nano-sized, cell-released particles that contain molecular information about their parent cells. In this study, we developed methods for saliva biomarker candidate identification using EV-isolation and proteomic evaluation. We used pooled saliva samples for assay development. EVs were isolated using membrane affinity-based methods followed by their characterization using nanoparticle tracking analysis and transmission electron microscopy. Subsequently, both saliva and saliva-EVs were successfully analyzed using proximity extension assay and label-free quantitative proteomics. Saliva-EVs had a higher purity than plasma-EVs, based on the expression of EV-proteins and albumin. The developed methods could be used for the analysis of individual saliva samples from amyotrophic lateral sclerosis (ALS) patients and controls (n = 10 each). The starting volume ranged from 2.1 to 4.9 mL and the amount of total isolated EV-proteins ranged from 5.1 to 42.6 µg. Although no proteins were significantly differentially expressed between the two groups, there was a trend for a downregulation of ZNF428 in ALS-saliva-EVs and an upregulation of IGLL1 in ALS saliva. In conclusion, we have developed a robust workflow for saliva and saliva-EV analysis and demonstrated its technical feasibility for biomarker discovery.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Pilot Projects , Proteomics/methods , Saliva/metabolism , Extracellular Vesicles/metabolism , Biomarkers/metabolism
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2234674

ABSTRACT

Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.


Subject(s)
TDP-43 Proteinopathies , Virus Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , COVID-19/genetics , COVID-19/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , SARS-CoV-2/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism
3.
Biomolecules ; 10(8)2020 08 07.
Article in English | MEDLINE | ID: covidwho-823584

ABSTRACT

Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.


Subject(s)
Circadian Rhythm , Melatonin/physiology , Neurodegenerative Diseases/metabolism , Oxidative Stress , Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Circadian Rhythm/drug effects , Dementia, Vascular/metabolism , Humans , Huntington Disease/metabolism , Melatonin/therapeutic use , Multiple Sclerosis/metabolism , Neurodegenerative Diseases/drug therapy , Oxidative Stress/drug effects , Parkinson Disease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL